

Application of passive absorbers for improving the performance of the Fermilab **Muon g-2 Experiment**

Diktys Stratakis

Accelerator Physics and Technology Seminar, Fermilab (virtual)

9 June 2020

Outline

- Overview of the Fermilab Muon Campus
- Overview of the Muon g-2 Experiment
- A concept for increasing muon beam intensity with passive absorbers
 - Description of the concept
 - Predictions from simulations
 - Operational experience in the Muon Campus
- Future work

Motivation

- In the next decade Fermilab will host two world-class precision science experiments:
 - The Muon g-2 experiment will determine with high precision the anomalous magnetic moment of the muon.
 - The Mu2e experiment will improve the sensitivity on the search for a neutrinoless conversion of a muon to an electron.
- A dedicated accelerator facility to provide beams to both experiments has been designed and constructed at Fermilab
- The Muon g-2 experiment precedes the Mu2e experiment
- In this talk, I will discuss and demonstrate a technique for enhancing the muon intensity of the Muon g-2 Experiment

Muon Campus layout

 The delivered muon beam is free of protons and pions, which created a major background in the BNL experiment

Delivered beam momentum distribution

The beam delivered to the storage ring of the Muon g-2
 Experiment has a rms momentum spread of ~1.3%

 The ring accepts muons within ~0.1% of the magic momentum (~3.1 GeV/c) only. Nearly 90% of the incoming

beam is lost.

- First separate particles by momentum by guiding them into a dispersive area
- Then, pass the beam through a wedge absorber
- With a properly designed wedge, high-energy muons will lose more energy than low-energy ones. As a result, the overall energy spread of the beam is reduced
- Through Fermilab's LDRD program we have been awarded a grant to design, install and test a wedge in the Muon Campus

Simulation of the concept

 Simulations of the wedge concept along the Fermilab Muon Campus revealed that a wedge can increase the number of stored muons for the Muon g-2 Experiment

Requirements

- Mechanisms involved in the process:
 - Energy loss (contraction)
 - Multiple Coulomb scattering (expansion)
 - Energy straggling (expansion)
- We require materials with:
 - Large energy loss term
 - Large radiation length
- Beamline location with:
 - Small beta function
 - Large dispersion

Choice of material

 A figure of merit for each material can be obtained by taking the product of it's energy-loss and radiation length terms

Boron Carbide (B₄C)

Quantity	Value	Units
<z a=""></z>		
Specific gravity		
Mean excitation energy		
Minimum ionization	4.157	MeV cm ⁻¹
Nuclear collision length	23.12	cm
Nuclear interaction length	33.27	cm
Pion collision length	33.92	cm
Pion interaction length	46.04	cm
Radiation length	19.89	cm
Critical energy	88.08	MeV (for e^+)
Molière radius	4.659	cm
Plasma energy $\hbar\omega_p$		
Muon critical energy		

Choice of geometry

- Optimum wedge geometry was studied with a fast Monte Carlo program
- Space restrictions limit the allowable wedge length to 130 mm

Fabrication and installation progress (1)

Fabrication and installation progress (2)

Simulated trajectories

Beam wedge covers roughly half of the beam

The majority of beam-material interaction happens near the

wedge apex

Parameter	Value at wedge
Dispersion, D_x	0.85 m
Beta, β_{χ}	2.3 m
Beta, $\beta_{\mathcal{Y}}$	3.8 m
Emittance rms, ε	12.0 μm
Sigma, σ_{χ}	10.0 mm

Measuring Technique

- We measure beam intensity at two locations: (1) upstream of ring injection, and (2) inside the ring after thousand of turns
- Calorimeters measure only muons that fit within the ring's momentum acceptance. As a result this value provides a key parameter that governs the wedge performance.

Test with a Polyethylene wedge

A polyethylene wedge provided a 5% gain in stored muons

Test with a Boron Carbide wedge

A boron carbide wedge provided a 7% gain in stored muons

Emittance growth

 While the momentum spread reduces, the transverse emittance grows as a result of emittance exchange and scattering

Simulation vs Experiment: Storage Ring

The agreement between simulation and experiment is good

Beam clean-up

- Muon campus beam is contaminated with target-born e+
- Simulation showed that a wedge can cut 50% of the incoming e+.

Improvement studies: Optics adjustments

 Proper adjustments of beam optics at the wedge may improve the performance

Practically, difficult due to both physical and hardware

limitations

Summary

- An accelerator facility to provide beams to both g-2 and Mu2e experiments has been designed and constructed at Fermilab
- The facility has been commissioned and is now in the operation phase for the Muon g-2 Experiment
- Through Fermilab's LDRD program we have been awarded a grant to design, install and test a wedge in the Fermilab Muon Campus. The system was installed and commissioned on time.
- Proof-of-principle test showed a up to 7% improvement on stored muons
- We hope to increase the improvement rate by modifying the beamline optics and upstream beam energy

Further contributions

Student Research

Nick Amato
Master's Thesis, NIU (Syphers)
May 2019
Title: Improved momentum
spread for precision physics
experiments using wedges

Lauren Carver
Fermilab Intern
Summer 2019
Title: Modeling a wedge
absorber for the g-2
Experiment

Jerzy Manczak
Fermilab Intern
Summer 2018
Title: Modeling a wedge
absorber for the Mu2e
Experiment

Joe Bradley
Fermilab Intern
Summer 2017
Title: Material & geometry
study of a wedge absorber
for the g-2 Experiment

Literature

PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 053501 (2019)

Application of passive wedge absorbers for improving the performance of precision-science experiments

Diktys Stratakis
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

* College of William and Mary Williamshure VA 22187 1154

Nuclear Inst. and Methods in Physics Research, A 962 (2020) 163704

Acknowledgements

- Thanks to Mike Syphers (co-PI, LDRD), for providing help with the Monte Carlo which was used for the wedge parameter scans
- Thanks to Jim Morgan (LDRD coordinator) for monitoring the fabrication and installation process
- Thanks to Carol Johnstone & David Neuffer for optics support
- Thanks Dirk Hurd and Jesse Batko for design and engineering support and to David Peterson for wedge motion control support.
- Thanks to George Deinlein and Nathan Froemming for operations support
- Thanks to the g-2 collaboration for supporting the project!

